Discrete Time Systems Part 8

Tham khảo tài liệu 'discrete time systems part 8', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Quadratic D Stabilizable Satisfactory Fault-tolerant Control with Constraints of Consistent Indices for Satellite Attitude Control Systems 199 J xTPX0 Y2p2 Zmax UTPU Y2p2 Theorem 2 Consider the system 1 and the cost function 7 for the given index q r and H norm-bound index Y if there exists symmetric positive matrix X matrix Y and scalars si 0 i 4 9 such that the following linear matrix inequality -X 0 AX BY T S21 -Y2I dt 0 0 . 1. X a cz w Sd w. 0 S22 _ 13 holds where S21 ex EY T X X YT YT YT YT YT YTJ s22 diag -I 7EJET -Q 1 -S4I -e5I e8J - 6J-1 - 7J-1 - 8J-1 9I - R-1 - 9I . Then for all admissible uncertainties and possible faults M the faulty closed-loop system 6 with satisfactory fault-tolerant controller u k Kx k M-1YX-1x k is asymptotically stable with an H norm-bound Y and the corresponding closed-loop cost function 7 is with J Zmax UTX-1U Y-p- . According to Theorem 1 and 2 the consistency of the quadratic D stabilizability constraint H performance and cost function indices for fault-tolerant control is deduced as the following optimization problem. Theorem 3 Given quadratic D stabilizability index o q r suppose the system 1 is robust fault-tolerant state feedback assignable for actuator faults case then LMIs 10 13 have a feasible solution. Thus the following minimization problem is meaningful. min y X Y Y i . LMIs 10 13 14 Proof Based on Theorem 1 if the system 1 is robust fault-tolerant state feedback assignable for actuator faults case then inequality aTPAc - P 0 has a feasible solution P K . And existing z 0 5 0 the following inequality holds z atpAc - p CctCc Q KtMRMK dI 0 15 Then existing a scalar Y0 when Y Y0 it can be obtained that at PjD y2i - dt p1d -1 dt p1 Ac ỐI where P1 ZP . Furthermore it follows that atP1Ac - P1 CctCc Q KTmrmk atp1d y2i -dtp1d -1 dtp1Ac 0 Using Schur complement and Theorem 2 it is easy to show that the above inequality is equivalent to linear matrix inequality 13 namely P1 K Y is a feasible solution of LMIs 200 Discrete .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.