Tham khảo tài liệu 'vehicular technologies increasing connectivity part 13', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Outage Performance and Symbol Error Rate Analysis of L-Branch Maximal-Ratio Combiner for K- and T - Fading 351 where J F1 - is Kummer confluent hypergeometric function defined in Wolfram http . Lower bound for ASEP can be obtained by introducing 28 in 43 and using the same solution as in the previous case a T asePlb ---- Lu ụ 1 k I I b 1 K- I J_ _ _Ù f2nb r Lụ- exp K Y J 2 Y I 2Lk 1 K- Lụ- Lụ - v------ỉ Y ụ 1 a Lụ- 1 k ỹ b f 1 K-V 5 Lụ I 2 Y 48 2nb3 r Lụ IexP K YJ I I u3Lk K- 1 Lụ- v 1 K Symbol Error Probability without diversity and for L-Branch MRC Fig. 11. Average symbol error probability for non-coherent BFSK L 1 2 3 and 4 352 Vehicular Technologies Increasing Connectivity Fig. 12. Average symbol error probability for coherent BPSK L 1 2 3 and 4 Symbol error probability analysis for maximal-ratio combiner in presence of n-p distributed fading To obtain ASEP at MRC output for r -g fading for non-coherent detection we introduce 34 in 38 ASEP a J exp -b y - frY dY 0 a_ -n 0 S V f r c HL yy 0 5 0 exp f 2uh i -I b - b Y I Y J h- 2 H- Y i - dY . Y J Integration of previous expression will be carried out via Meijer-G functions defined in Wolfram http HypergeometricFunctions MeijerG . First we have to transform exponential and Bessel functions in Meijer-G functions in accordance to Wolfram http and Wolfram http . Integration is performed with Wolfram http . After some algebraic manipulations and simplifications in accordance to Wolfram http Outage Performance and Symbol Error Rate Analysis of L-Branch Maximal-Ratio Combiner for K- and T - Fading 353 and Wolfram http we obtain closed-form expression for average SEP for non-coherent detection Lạ .