Tham khảo tài liệu 'vectơ trong không gian. quan hệ vuông (p8)', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG. I. Mục tiêu Qua chủ đề này HS cần 1 Về Kiến thức Làm cho HS hiểu sâu sắc hơn về kiến thức cơ bản về quan hệ vuông góc trong không gian và bước đầu hiểu được một số kiến thức mới về quan hệ vuông góc trong không gian trong chương trình nâng cao chưa được đề cập trong chương trình chuẩn. 2 Về kỹ năng Tăng cường rèn luyện kỹ năng giải toán về quan hệ vuông góc trong không gian. Thông qua việc rèn luyện giải toán HS được củng cố một số kiến thức đã học trong chương trình chuẩn và tìm hiểu một số kiến thức mới trong chương trình nâng cao. 3 Về tư duy và thái độ Tích cực hoạt động trả lời câu hỏi. Biết quan sát và phán đoán chính xác. Làm cho HS hứng thú trong học tập môn Toán. II. Chuẩn bị củaGV và HS -GV Giáo án các bài tập và phiếu học tập . -HS Ôn tập liến thức cũ làm bài tập trước khi đến lớp. III. Tiến trình giờ dạy -Ổn định lớp chia lớp thành 6 nhóm. -Kiểm tra bài cũ Đan xen với các hoạt động nhóm. Ôn tập kiến thức GV nêu câu hỏi để ôn tập kiến thức cũ. Bài mới Hoạt động của GV Hoạt động của HS Nội dung HĐ1 Sửa bài tập 1 GV vẽ hình lên bảng. GV gọi HS đại diện các nhóm lên bảng trình bày lời giải các bài tập 1 và 2 đã ra trong tiết 4. Gọi HS nhận xét bổ sung nếu cần GV nhận xét chỉnh sửa và bổ HS đại diện lên bảng trình bày lời giải có giải thích HS nhận xét bổ sung và sửa chữa ghi chép. HS chú ý theo dõi để lĩnh hội kiến thức. Bài tập 1 Cho hình vuông ABCD. Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mặt phang SAB vuông góc với mặt phẳng ABCD . Gọi H và I lần lượt lần lượt là trung điểm của AB và BC. a CMR SAB 1 SAD SAB 1 SBC . b Tính góc giữa 2 mặt phẳng SAD và SBC . c Chứng minh rằng SHC 1 SDI . Giải a Ta có H là trung điểm của AB. sung. Bài tập 2 tương tự . - Vì SAB là tam giác đều SH 1 AB. Do SAB 1 ABCD SAB n ABCD AB SH 1 ABCD SH 1 AD 1 - Vì ABCD là hình vuông AB 1AD 2 - Từ 1 và 2 AD 1 SAB . Mà AD c SAD . Vậy SAD 1 SAB Lập luận tương tự ta có SBC 1 SAB b Xác định góc giữa 2 mặt phang SAD và SBC - Ta có