Báo cáo toán học: " New proofs of Schur-concavity for a class of symmetric functions"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học được đăng trên tạp chí toán học quốc tế đề tài: New proofs of Schur-concavity for a class of symmetric functions | Journal of Inequalities and Applications SpringerOpen0 This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text HTML versions will be made available soon. New proofs of Schur-concavity for a class of symmetric functions Journal of Inequalities and Applications 2012 2012 12 doi 1029-242X-2012-12 Huan-Nan Shi shihuannan@ Jian Zhang sftzhangjian@ Chun Gu sftguchun@ ISSN 1029-242X Article type Research Submission date 24 May 2011 Acceptance date 17 January 2012 Publication date 17 January 2012 Article URL http content 2012 1 This peer-reviewed article was published immediately upon acceptance. It can be downloaded printed and distributed freely for any purposes see copyright notice below . For information about publishing your research in Journal of Inequalities and Applications go to http authors instructions For information about other SpringerOpen publications go to http 2012 Shi et al. licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License http licenses by which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. NEW PROOFS OF SCHUR-CONCAVITY FOR A CLASS OF SYMMETRIC FUNCTIONS HUAN-NAN SHI JIAN ZHANG AND CHUN GU DEPARTMENT OF ELECTRONIC INFORMATION TEACHER S COLLEGE BEIJING UNION UNIVERSITY BEIJING 100011 . CHINA CORRESPONDING AUTHOR SHIHUANNAN@ SFTHUANNAN@ EMAIL ADDRESSES JZ SFTZHANGJIAN@ CG SFTGUCHUN@ Abstract. By properties of the Schur-convex function Schur-concavity for a class of symmetric functions is simply proved uniform. 2000 Mathematics Subject Classification Primary 26D15 05E05 26B25. Keywords majorization Schur-concavity inequality symmetric functions .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.