Báo cáo hóa học: " Some identities on the weighted q-Euler numbers and q-Bernstein polynomials"

Tuyển tập các báo cáo nghiên cứu về hóa học được đăng trên tạp chí hóa hoc quốc tế đề tài : Some identities on the weighted q-Euler numbers and q-Bernstein polynomials | Kim et al. Journal of Inequalities and Applications 2011 2011 64 http content 2011 1 64 Journal of Inequalities and Applications a SpringerOpen Journal RESEARCH Open Access Some identities on the weighted q-Euler numbers and q-Bernstein polynomials Taekyun Kim 1 Young-Hee Kim1 and Cheon S Ryoo2 Correspondence tkkim@ 1Division of General Education- Mathematics Kwangwoon University Seoul 139-701 Korea Full list of author information is available at the end of the article Springer Abstract Recently Ryoo introduced the weighted q-Euler numbers and polynomials which are a slightly different Kim s weighted q-Euler numbers and polynomials see C. S. Ryoo A note on the weighted q-Euler numbers and polynomials 2011 . In this paper we give some interesting new identities on the weighted q-Euler numbers related to the q-Bernstein polynomials 2000 Mathematics Subject Classification - 11B68 11S40 11S80 Keywords Euler numbers and polynomials q-Euler numbers and polynomials weighted q-Euler numbers and polynomials Bernstein polynomials q-Bernstein polynomials 1. Introduction Let p be a fixed odd prime number. Throughout this paper zp Qp c and cp will denote the ring of Ji-adic integers the field of Ji-adic rational numbers the complex number fields and the completion of algebraic closure of Qp respectively. Let N be the set of natural numbers and Z N u 0 . Let vp be the normalized exponential valuation of cp with IpIp p p p p. When one talks of q-extension q is variously considered as an indeterminate a complex number q e c or a Ji-adic number q e cp. If q e c then one normally assumes q 1 and if q e cp then one normally assumes q - 1 p 1. In this paper the q-number is defined by 1 - 4 I q see 1-19 Note that limq 1 x q x see 1-19 . Let f be a continuous function on zp. For a e N and k n e z the weighted Ji-adic q-Bernstein operator of order n for f is defined by Kim as follows roWffIr Y n f k mA II vi k Bn q V x y I k f n x a 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.