Báo cáo hóa học: " Refinements of Jordan’s inequality"

Tuyển tập các báo cáo nghiên cứu về hóa học được đăng trên tạp chí hóa hoc quốc tế đề tài : Refinements of Jordan’s inequality | Kuo Journal of Inequalities and Applications 2011 2011 130 http content 2011 1 130 RESEARCH 3 Journal of Inequalities and Applications a SpringerOpen Journal Open Access Refinements of Jordan s inequality Meng-Kuang Kuo Correspondence kuo53@. tw Center of General Education Jen-Teh Junior College of Medicine Nursing and Management No. 799 Sha-Luen Hu Xi-Zhou Li Hou-Loung Town Miaoli County Republic of China Abstract A method of sharpening Jordan s inequality proposed by Li-Li would be improved. Increasing lower bounds and decreasing upper bounds for strengthened Jordan s inequality can be constructed and the errors of lower-upper bounds for strengthened Jordan s inequality can be estimated. 2010 Mathematics Subject Classification 26D05 26D15. Keywords Jordan s inequality lower bound upper bound 1 Introduction The well-known Jordan s inequality 1 p. 33 reads that 2 tín 1 0 x n 1 1 n x 2 with equality holds if and only if x n 2. This inequality plays an important role in many areas of pure and applied mathematics. Jordan s inequality has been refined generalized and applied by many mathematicians. It was first extended to the following sínx 2 7 n2 - 4x2 0 x n 1 2 x n 12n 2 and then it was further refined to inequality sin 2 2 - 4 2 0 x n. 1 3 x n n3 2 For detailed information please refer to the expository and survey articles 2 and related references therein. In 3 Theorem or 2 a new method of sharpening Jordan s inequality was established by Li-Li which shows that one can obtain strengthened Jordan s inequalities from old ones. This result may be stated as follows. Theorem Li-Li Let g 0 n 2 0 1 be a continuous function. If sin x n 1 4 g x 0 x x then the double inequality 2 n sin x n- V 2 Kx f 1 h x 0 x n 2 1 5 2011 Kuo licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License http licenses by which permits .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.