Báo cáo hóa học: " A new interpretation of Jensen’s inequality and geometric properties of -means"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: A new interpretation of Jensen’s inequality and geometric properties of -means | Nakasuji et al. Journal of Inequalities and Applications 2011 2011 48 http content 2011 1 48 RESEARCH 3 Journal of Inequalities and Applications a SpringerOpen Journal Open Access A new interpretation of Jensen s inequality and geometric properties of -means Yasuo Nakasuji1 Keisaku Kumahara1 and Sin-Ei Takahasi2 Correspondence sin-ei@emperor. 2Toho University Yamagata University Professor Emeritus Chiba 273-0866 Japan Full list of author information is available at the end of the article Abstract We introduce a mean of a real-valued measurable function f on a probability space induced by a strictly monotone function Ộ. Such a mean is called a -mean of f and written by Mf We first give a new interpretation of Jensen s inequality by -mean. Next as an application we consider some geometric properties of Mf for example refinement strictly monotone increasing continuous -mean path convexity etc. Mathematics Subject Classification 2000 Primary 26E60 Secondary 26B25 26B05. Keywords Jensen s inequality Mean Refinement Convexity Concavity 1. Introduction We are interested in means of real-valued measurable functions induced by strictly monotone functions. These means are somewhat different from continuously differentiable means . C1-means introducing by Fujii et al. 1 but they include many known numerical means. Here we first give a new interpretation of Jensen s inequality by such a mean and we next consider some geometric properties of such means as an application of it. Throughout the paper we denote by ít ự I and f a probability space an interval of R and a real-valued measurable function on í with f m e I for almost all m e í respectively. Let C I be the real linear space of all continuous real-valued functions defined on I. Let C m I resp. C-JI be the set of all Ộ e C I which is strictly monotone increasing resp. decreasing on I. Then C m I resp. C-m I is a positive resp. negative cone of C I . Put Csm

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.