Artificial Intelligence for Wireless Sensor Networks Enhancement Part 12

Tham khảo tài liệu 'artificial intelligence for wireless sensor networks enhancement part 12', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | A Compromise-resilient Pair-wise Rekeying Protocol in Hierarchical Wireless Sensor Networks 319 Notation Description CHa The Id of cluster head a CSk The Id of compromised sensor node k E data K An encryption function using K as a key f y a symmetric polynomial a finite field with any element that can be represented by bits gu y the univariate polynomial for node u obtained by gu y f u y gu y the perturbed polynomial preloaded to node u Hk x the hashed value based on the most significant k bits of x Ka b the shared pairwise key between nodes a and b the minimal integer satisfying 2l q n the total number of sensor nodes to be deployed n q na the number of sensor nodes in a cluster nc the number of compromised sensor nodes in a cluster m the total number of perturbation polynamials m 0 Pu y a randomly generated univariate rekeying polynomial at node u q a large prime number r a positive integer such that 2r q S a set of legitimate IDs for sensor nodes S c 0 q 1 SNi The Id of sensor node i t the degree of both variables x and y in the symmetric polynomial f x y Qu y a perturbation polynamial assigned for node u a set of perturbation polynamials satisfying the limited infection property regarding r and S Table 1. Notations the renewed nodes. Based on the number n a large prime number q is chosen such that n q and let be the minimal integer satisfying 2e q. The offline authority arbituary constructs a bivariate symmetric polynomial f x y Ễ Fq x y where the degrees of x and y are both t and for any x y Ễ Fq f x y f y x . It then applies the method in Zhang et al. 2007 to construct the legitimate ID set S for sensor nodes and the perturbation polynamial set 4 which satisfies the limited infection property regarding r and S with m m 2 number of bivariate symmetric polynomials. Finally we note that the desired number of bits for any pairwise key is r. Pre-distribution of Perturbed Polynomials Before sensor devices are deployed into usage some secret information should .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.