Báo cáo sinh học: " Research Article On The Frobenius Condition Number of Positive Definite Matrices"

Tuyển tập các báo cáo nghiên cứu về sinh học được đăng trên tạp chí sinh học Journal of Biology đề tài: Research Article On The Frobenius Condition Number of Positive Definite Matrices | Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010 Article ID 897279 11 pages doi 2010 897279 Research Article On The Frobenius Condition Number of Positive Definite Matrices Ramazan Turkmen and Zubeyde Ulukok Department of Mathematics Science Faculty Selcuk University 42003 Konya Turkey Correspondence should be addressed to Ramazan Turkmen rturkmen@ Received 19 February 2010 Revised 4 May 2010 Accepted 15 June 2010 Academic Editor S. S. Dragomir Copyright 2010 R. Turkmen and Z. Ulukok. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. We present some lower bounds for the Frobenius condition number of a positive definite matrix depending on trace determinant and Frobenius norm of a positive definite matrix and compare these results with other results. Also we give a relation for the cosine of the angle between two given real matrices. 1. Introduction and Preliminaries The quantity A A-1 k A if A is nonsingular if A is singular is called the condition number for matrix inversion with respect to the matrix norm ll ll. Notice that k A A-1 A A-1A ZH 1 for any matrix norm see . 1 page 336 . The condition number k A II A A-1 II of a nonsingular matrix A plays an important role in the numerical solution of linear systems since it measures the sensitivity of the solution of linear systems Ax b to the perturbations on A and b. There are several methods that allow to find good approximations of the condition number of a general square matrix. Let Cnxn and Rnxn be the space of n X n complex and real matrices respectively. The identity matrix in Cnxn is denoted by I In. A matrix A e Cnxn is Hermitian if A A 2 Journal of Inequalities and Applications where A denotes the conjugate transpose of A. A Hermitian matrix A is said to be positive semidefinite or .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.