Systems, Structure and Control 2012 Part 3

Tham khảo tài liệu 'systems, structure and control 2012 part 3', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Asymptotic Stability Analysis of Linear Time-Delay Systems Delay Dependent Approach 33 Conclusion Stojanovic Debeljkovic 2006 Eq. 4 expressed through matrix R can be written in a different form as follows R- A0 -e-RTA1 0 8 and there follows det r- A0 -e-RTA1 0 9 Substituting a matrix variable R by scalar variable s in 7 the characteristic equation of the system 1 is obtained as f s det sI- Ao - e sTA1 0 10 Let us denote E s f s 0 11 a set of all characteristic roots of the system 1 . The necessity for the correctness of desired results forced us to propose new formulations of Theorem . Theorem Stojanovic Debeljkovic 2006 Suppose that there exist s the solution s T 0 e Qt of 4 . Then the system 1 is asymptotically stable if and only if any of the two following statements holds 1. For any matrix Q Q 0 there exists matrix P0 P0 0 such that 2 holds for all solutions T 0 eftp of 4 . 2. The condition 7 holds for all solutions R A1 T 0 e Qr of 8 . Conclusion Stojanovic Debeljkovic 2006 Statement Theorem require that condition 2 is fulfilled for all solutions T 0 e Qt of 4 . In other words it is requested that condition 7 holds for all solution R of 8 especially for R Rmax where the matrix Rm e QR is maximal solvent of 8 that contains eigenvalue with a maximal real part Xm eE Re Xm maxRes . Therefore from 7 follows condition Re Xi Rm 0. These seE matrix condition is analogous to the following known scalar condition of asymptotic stability System 1 is asymptotically stable if and only if the condition Res 0 holds for all solutions s of 10 especially for s Xm . On the basis of Conclusion it is possible to reformulate Theorem in the following way. Theorem Stojanovic Debeljkovic 2006 Suppose that there exists maximal solvent R m of 8 . Then the system 1 is asymptotically stable if and only if any of the two following equivalent statements holds 1. For any matrix Q Q 0 there exists matrix Po Po 0 such that 6 holds for the solution

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
10    24    1    27-06-2022
74    23    3    27-06-2022
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.