Computational Fluid Mechanics and Heat Transfer Third Edition_5

Tham khảo tài liệu 'computational fluid mechanics and heat transfer third edition_5', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | The general solution 145 Figure One-dimensional heat conduction in a ring. T T t only If T is spatially uniform it can still vary with time. In such cases V2T q - 1 k a st -0 and dT dt becomes an ordinary derivative. Then since a - k pc d - pc This result is consistent with the lumped-capacity solution described in Section . If the Biot number is low and internal resistance is unimportant the convective removal of heat from the boundary of a body can be prorated over the volume of the body and interpreted as effective - -h T d y Tr- W m3 volume and the heat diffusion equation for this case eqn. becomes -- hA T - Too 4 4 dt pcV T 1f The general solution in this situation was given in eqn. . A particular solution was also written in eqn. . 146 Analysis of heat conduction and some steady one-dimensional problems Separation of variables A general solution of multidimensional problems Suppose that the physical situation permits us to throw out all but one of the spatial derivatives in a heat diffusion equation. Suppose for example that we wish to predict the transient cooling in a slab as a function of the location within it. If there is no heat generation the heat diffusion equation is d2T 1 dT dx2 a dt A common trick is to ask Can we find a solution in the form of a product of functions of t and x T T t X x To find the answer we substitute this in eqn. and get X T 1 T X a where each prime denotes one differentiation of a function with respect to its argument. Thus T dT dt and X d2X dx2. Rearranging eqn. we get X 1 T_ X a T This is an interesting result in that the left-hand side depends only upon x and the right-hand side depends only upon t. Thus we set both sides equal to the same constant which we call -À2 instead of say À for reasons that will be clear in a moment X 1 7 -Ả2 a constant X a T It follows that the differential eqn. can be resolved into two ordinary differential equations X -Á2X and T

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.