Báo cáo hóa học: " Research Article GPU Boosted CNN Simulator Library for Graphical Flow-Based Programmability"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article GPU Boosted CNN Simulator Library for Graphical Flow-Based Programmability | Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2009 Article ID 930619 11 pages doi 2009 930619 Research Article GPU Boosted CNN Simulator Library for Graphical Flow-Based Programmability Balazs Gergely Soos 1 2 Adam Rak 1 Jozsef Veres 1 and Gyorgy Cserey3 1 Faculty of Information Technology Pazmany Peter Catholic University Prater u. 50 A 1083 Budapest Hungary 2 Computer and Automation Research Institute of the Hungarian Academy of Sciences Kendeu. 13-17. 1111 Budapest Hungary 3 Infobionic and Neurobiological Plasticity Research Group Hungarian Academy of Sciences Pazmany University and Semmelweis University Prater u. 50 A 1083 Budapest Hungary Correspondence should be addressed to Balazs Gergely Soos soos@ Received 2 October 2008 Revised 13 January 2009 Accepted 12 March 2009 Recommended by Ronald Tetzlaff A graphical environment for CNN algorithm development is presented. The new generation of graphical cards with many general purpose processing units introduces the massively parallel computing into PC environment. Universal Machine on Flows- UMF like notation highlighting image flows and operations is a useful tool to describe image processing algorithms. This documentation step can be turned into modeling using our framework backed with MATLAB Simulink and the power of a video card. This latter relatively cheap extension enables a convenient and fast analysis of CNN dynamics and complex algorithms. Comparison with other PC solutions is also presented. For single template execution our approach yields run times 40x faster than that of the widely used Candy simulator. In the case of simpler algorithms real-time execution is also possible. Copyright 2009 Balazs Gergely Soos et al. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
15    20    4    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.