Báo cáo hóa học: "Research Article Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations | Hindawi Publishing Corporation Advances in Difference Equations Volume 2008 Article ID 718408 21 pages doi 2008 718408 Research Article Stability of Equilibrium Points of Fractional Difference Equations with Stochastic Perturbations Beatrice Paternoster1 and Leonid Shaikhet2 1 Dipartimento di Matematica e Informatica Universita di Salerno via Ponte Don Melillo 84084 Fisciano Sa Italy 2 Department of Higher Mathematics Donetsk State University of Management 163 a Chelyuskintsev street 83015 Donetsk Ukraine Correspondence should be addressed to Leonid Shaikhet Received 6 December 2007 Accepted 9 May 2008 Recommended by Jianshe Yu It is supposed that the fractional difference equation xn 1 p k oajxn j k k 0bjXn-j n 0 1 . has an equilibrium point X and is exposed to additive stochastic perturbations type of Ơ xn - x n 1 that are directly proportional to the deviation of the system state xn from the equilibrium point X. It is shown that known results in the theory of stability of stochastic difference equations that were obtained via V. Kolmanovskii and L. Shaikhet general method of Lyapunov functionals construction can be successfully used for getting of sufficient conditions for stability in probability of equilibrium points of the considered stochastic fractional difference equation. Numerous graphical illustrations of stability regions and trajectories of solutions are plotted. Copyright 2008 B. Paternoster and L. Shaikhet. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. Introduction Equilibrium points Recently there is a very large interest in studying the behavior of solutions of nonlinear difference equations in particular fractional difference equations 1-38 . This interest really is so large that a necessity appears to get some generalized results. Here the stability

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.