Tham khảo đề thi - kiểm tra đề thi thử đại học môn toán năm 2012_đề số 177 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 Môn thi : TOÁN (ĐỀ 177) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số ( là tham số) (1). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 2. Tìm các giá trị của m để đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ dương . Câu II (2 điểm) 1. Giải phương trình: 2. Giải hệ phương trình: Câu III (1 điểm) Cho hình chóp có đáy là hình chữ nhật với cạnh vuông góc với đáy, cạnh tạo với mặt phẳng đáy một góc Trên cạnh lấy điểm sao cho . Mặt phẳng cắt cạnh tại điểm . Tính thể tích khối chóp Câu IV (2 điểm) 1. Tính tích phân: 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y = 2sin8x + cos42x PHẦN TỰ CHỌN: Thí sinh chọn câu hoặc câu Câu .( 3 điểm ) Theo chương trình Chuẩn 1. Cho đường tròn (C) : và điểm M(2;4) . a) Viết phương trình đường thẳng đi qua M và cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của AB b) Viết phương trình các tiếp tuyến của đường tròn (C) có hệ số góc k = -1 . 2. Cho hai đường thẳng song song d1 và d2. Trên đường thẳng d1 có 10 điểm phân biệt, trên đường thẳng d2 có n điểm phân biệt ( ). Biết rằng có 2800 tam giác có đỉnh là các điểm đã cho. Tìm n. Câu .( 3 điểm ) Theo chương trình Nâng cao 1. Áp dụng khai triển nhị thức Niutơn của , chứng minh rằng: 2. . Cho hai đường tròn : (C1) : x2 + y2 – 4x +2y – 4 = 0 và (C2) : x2 + y2 -10x -6y +30 = 0 có tâm lần lượt là I, J a) Chứng minh (C1) tiếp xúc ngoài với (C2) và tìm tọa độ tiếp điểm H . b) Gọi (d) là một tiếp tuyến chung không đi qua H của (C1) và (C2) . Tìm tọa độ giao điểm K của (d) và đường thẳng IJ . Viết phương trình đường tròn (C) đi qua K và tiếp xúc với hai đường tròn (C1) và (C2) tại H . ----------------------------- Hết ----------------------------- Cán bộ coi thi không giải thích gì thêm. ®¸p ¸n ®Ò thi SỐ 177 ®Æt , ta cã dt = hay dt = dx vµ Khi x = 2 th× t = 3 vµ khi x= 6 th× t = 5 Khi ®ã : EMBED = EMBED = = 0,5 0,25