Tham khảo đề thi - kiểm tra đề thi thử đại học môn toán năm 2012_đề số 181 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 181 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số (C) sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho trên đồ thị (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu II (2,0 điểm) 1. Giải hệ phương trình: . phương trình sau: . Câu III (1,0 điểm) Tính tích phân: I = . Câu IV(1,0 điểm) Cho tứ diện ABCD có AC = AD = a , BC = BD = a, khoảng cách từ B đến mặt phẳng (ACD) bằng . Tính góc giữa hai mặt phẳng (ACD) và (BCD). Biết thể của khối tứ diện ABCD bằng . Câu V (1,0 điểm) Với mọi số thực x, y thỏa điều kiện . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức . II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) chương trình Chuẩn Câu ( 2,0 điểm) 1. Trong mp với hệ tọa độ Oxy cho đường tròn : x2 +y2 - 2x +6y -15=0 (C ). Viết PT đường thẳng (Δ) vuông góc với đường thẳng: 4x-3y+2 =0 và cắt đường tròn (C) tại A;B sao cho AB = 6. không gian với hệ tọa độ Oxyz cho hai đường thẳng: d1 : và d2 : . Xét vị trí tương đối của d1 và d2 . Cho hai điểm A(1;-1;2) và B(3 ;- 4;-2), Tìm tọa độ điểm I trên đường thẳng d1 sao cho IA + IB đạt giá trị nhỏ nhất. Câu (1,0 điểm) Cho , là các nghiệm phức của phương trình . Tính giá trị của biểu thức A = . B. Theo chương trình Nâng cao. Câu (2,0 điểm) mặt phẳng Oxy cho elip (E): và đường thẳng :3x + 4y =12. Từ điểm M bất kì trên kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định. không gian với hệ tọa độ Oxyz , cho M(1;2;3). Lập phương trình mặt phẳng đi qua M cắt ba tia Ox tại A, Oy tại B, Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất. Câu (1,0 điểm) Giải hệ phương trình: Hết Thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: ĐÁP ÁN ĐỀ THI THỬ TOÁN (ĐỀ181) ĐK: x,y > 0 - hệ phương trình Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định. ------------------Hết------------------