Báo cáo hóa học: " Research Article Liouville Theorems for a Class of Linear Second-Order Operators with Nonnegative Characteristic Form"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Liouville Theorems for a Class of Linear Second-Order Operators with Nonnegative Characteristic Form | Hindawi Publishing Corporation Boundary Value Problems Volume 2007 Article ID 48232 16 pages doi 2007 48232 Research Article Liouville Theorems for a Class of Linear Second-Order Operators with Nonnegative Characteristic Form Alessia Elisabetta Kogoj and Ermanno Lanconelli Received 1 August 2006 Revised 28 November 2006 Accepted 29 November 2006 Recommended by Vincenzo Vespri We report on some Liouville-type theorems for a class of linear second-order partial differential equation with nonnegative characteristic form. The theorems we show improve our previous results. Copyright 2007 A. E. Kogoj and E. Lanconelli. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. Introduction In this paper we survey and improve some Liouville-type theorems for a class of hypoel-liptic second-order operators appeared in the series of papers 1-4 . The operators considered in these papers can be written as follows N N ẩ ỵ dXi a x dxj bi x dXi - dt i j 1 i 1 where the coefficients aij bi are t-independent and smooth in RN. The matrix A aij i j 1 . N is supposed to be symmetric and nonnegative definite at any point of RN. We will denote by z x t X G RN t G R the point of RN 1 by Y the first-order differential operator N Y ỵ bi x dxi - dt i 1 2 Boundary Value Problems and by ẩo the stationary counterpart of ẩ that is N N ẩ0 x dXi an x dxj bi x dXi. i j 1 i 1 We always assume the operator Y to be divergence free that is 1 dXibi x 0 at any point X e RN. Moreover as in 2 we assume the following hypotheses. H1 ẩ is homogeneous of degree two with respect to the group of dilations dff 0 given by dffx t Dffx Ả2t x x Dỵ x Dffx1 . xff Aơ1 xi . ằơnxn where ơ ơ1 . ƠN is an N-tuple of natural numbers satisfying 1 Ơ1 ơ2 ƠN. When we say that ẩ is dvhomogeneous of degree two we mean that ẩ u dẦ x t A2 ẩu dẦ x t Vu e C

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.