Báo cáo hóa học: " Research Article A Note on the Relaxation-Time Limit of the Isothermal Euler Equations"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article A Note on the Relaxation-Time Limit of the Isothermal Euler Equations | Hindawi Publishing Corporation Boundary Value Problems Volume 2007 Article ID 56945 10 pages doi 2007 56945 Research Article A Note on the Relaxation-Time Limit of the Isothermal Euler Equations Jiang Xu and Daoyuan Fang Received 3 July 2007 Accepted 30 August 2007 Recommended by Patrick J. Rabier This work is concerned with the relaxation-time limit of the multidimensional isothermal Euler equations with relaxation. We show that Coulombel-Goudon s results 2007 can hold in the weaker and more general Sobolev space of fractional order. The method of proof used is the Littlewood-Paley decomposition. Copyright 2007 J. Xu and D. Fang. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. Introduction The multidimensional isothermal Euler equation with relaxation describing the perfect gas flow is given by nt V nu 0 nu t V nu u Vp n - 1 nu T for t x e 0 to X Rd d 3 where n u u1 u2 . ud T t represents transpose denote the density and velocity of the flow respectively and the constant T is the momentum relaxation time for some physical flow. Here we assume that 0 T 1. The pressure p n satisfies p n An and A 0 is a physical constant. The symbols V are the gradient operator and the symbol for the tensor products of two vectors respectively. The system is supplemented with the initial data n u x 0 n0 u0 x x e Rd. 2 Boundary Value Problems To be concerned with the small relaxation-time analysis we define the scaled variables nT uT x s n u x s . T Then the new variables satisfy the following equations T nTuT n V 0 T J 2 nTuT 2f nTuT uT nTuT T T s T2 T with initial data n uT x 0 nc uc . Let T 0 formally we obtain the heat equation Ns - AAN 0 A x 0 n0. The above formal derivation of heat equation has been justified by many authors see 1-3 and the references therein. In 2 Junca and Rascle .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.