Báo cáo hóa học: " Research Article Compensating Acoustic Mismatch Using Class-Based Histogram Equalization for Robust Speech Recognition"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Compensating Acoustic Mismatch Using Class-Based Histogram Equalization for Robust Speech Recognition | Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2007 Article ID 67870 9 pages doi 2007 67870 Research Article Compensating Acoustic Mismatch Using Class-Based Histogram Equalization for Robust Speech Recognition Youngjoo Suh Sungtak Kim and Hoirin Kim School of Engineering Information and Communications University 119 Munjiro Daejeon 305-732 Yuseong-Gu South Korea Received 1 February 2006 Revised 26 November 2006 Accepted 1 February 2007 Recommended by Mark Gales A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating for an acoustic mismatch between training and test environments but also reducing the two fundamental limitations of the conventional histogram equalization method the discrepancy between the phonetic distributions of training and test speech data and the nonmonotonic transformation caused by the acoustic mismatch. The algorithm employs multiple class-specific reference and test cumulative distribution functions classifies noisy test features into their corresponding classes and equalizes the features by using their corresponding class reference and test distributions. The minimum mean-square error log-spectral amplitude MMSE-LSA -based speech enhancement is added just prior to the baseline feature extraction to reduce the corruption by additive noise. The experiments on the Aurora2 database proved the effectiveness of the proposed method by reducing relative errors by 62 over the mel-cepstral-based features and by 23 over the conventional histogram equalization method respectively. Copyright 2007 Youngjoo Suh et al. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. INTRODUCTION The performance of automatic speech recognition ASR systems degrades severely when

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.