Báo cáo hóa học: " Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking | Hindawi Publishing Corporation EURASIP Journal on Applied Signal Processing Volume 2006 Article ID34970 Pages 1-17 DOI ASP 2006 34970 Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking Yoshimitsu Mori 1 Hiroshi Saruwatari 1 Tomoya Takatani 1 Satoshi Ukai 1 Kiyohiro Shikano 1 Takashi Hiekata 2 Youhei Ikeda 2 Hiroshi Hashimoto 2 and Takashi Morita2 1 Graduate School of Information Science Nara Institute of Science and Technology Ikoma 630-0192 Japan 2 Kobe Steel Ltd. Kobe 651-2271 Japan Received 1 January 2006 Revised 22 June 2006 Accepted 22 June 2006 A new two-stage blind source separation BSS method for convolutive mixtures of speech is proposed in which a single-input multiple-output SIMO -model-based independent component analysis ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition the real-time implementation of the proposed BSS is illustrated. Copyright 2006 Yoshimitsu Mori et al. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. 1. INTRODUCTION Blind source separation BSS is the approach taken to estimate original source signals using only the information of the mixed

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.