Báo cáo hóa học: " Research Article Tracking Signal Subspace Invariance for Blind Separation and Classification of Nonorthogonal Sources in Correlated Noise"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Tracking Signal Subspace Invariance for Blind Separation and Classification of Nonorthogonal Sources in Correlated Noise | Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2007 Article ID 37485 20 pages doi 2007 37485 Research Article Tracking Signal Subspace Invariance for Blind Separation and Classification of Nonorthogonal Sources in Correlated Noise Karim G. Oweiss1 and David J. Anderson2 1 Electrical Computer Engineering Department Michigan State University East Lansing MI 48824-1226 USA 2 Electrical Engineering Computer Science Department University of Michigan Ann Arbor MI 48109-2122 USA Received 1 October 2005 Revised 11 April 2006 Accepted 27 May 2006 Recommended by George Moustakides We investigate a new approach for the problem of source separation in correlated multichannel signal and noise environments. The framework targets the specific case when nonstationary correlated signal sources contaminated by additive correlated noise impinge on an array of sensors. Existing techniques targeting this problem usually assume signal sources to be independent and the contaminating noise to be spatially and temporally white thus enabling orthogonal signal and noise subspaces to be separated using conventional eigendecomposition. In our context we propose a solution to the problem when the sources are nonorthog-onal and the noise is correlated with an unknown temporal and spatial covariance. The approach is based on projecting the observations onto a nested set of multiresolution spaces prior to eigendecomposition. An inherent invariance property of the signal subspace is observed in a subset of the multiresolution spaces that depends on the degree of approximation expressed by the orthogonal basis. This feature among others revealed by the algorithm is eventually used to separate the signal sources in the context of best basis selection. The technique shows robustness to source nonstationarities as well as anisotropic properties of the unknown signal propagation medium under no constraints on the array design and with minimal assumptions .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.