Báo cáo hóa học: " GENERIC CONVERGENCE OF ITERATES FOR A CLASS OF NONLINEAR MAPPINGS"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: GENERIC CONVERGENCE OF ITERATES FOR A CLASS OF NONLINEAR MAPPINGS | GENERIC CONVERGENCE OF ITERATES FOR A CLASS OF NONLINEAR MAPPINGS SIMEON REICH AND ALEXANDER J. ZASLAVSKI Received 4 March 2004 Let K be a nonempty bounded closed and convex subset of a Banach space. We show that the iterates of a typical element in the sense of Baire s categories of a class of continuous self-mappings of K converge uniformly on K to the unique fixed point of this typical element. 1. Introduction Let K be a nonempty bounded closed and convex subset of a Banach space X II II . We consider the topological subspace K c X with the relative topology induced by the norm II II. Set diam K sup x - y II x y G K . Denote by A the set of all continuous mappings A K - K which have the following property P1 for each e 0 there exists xe G K such that 11 Ax xe I1 I x xe I1 E V x G K. For each A B G set d A B sup Ax Bx x G K . Clearly the metric space d is complete. In this paper we use the concept of porosity 1 2 3 4 5 6 which we now recall. Let Y p be a complete metric space. We denote by B y r the closed ball of center y G Y and radius r 0. A subset E c Y is called porous in Y p if there exist a G 0 1 and r0 0 such that for each r G 0 r0 and each y G Y there exists z G Y for which B z ar c B y r E. Copyright 2004 Hindawi Publishing Corporation Fixed Point Theory and Applications 2004 3 2004 211-220 2000 Mathematics Subject Classification 47H09 47H10 54E50 54E52 URL http S1687182004403015 212 Generic convergence A subset of the space Y is called Ơ-porous in Y p if it is a countable union of porous subsets in Y p . Since porous sets are nowhere dense all Ơ-porous sets are of the first category. If Y is a finite-dimensional Euclidean space R then Ơ-porous sets are of Lebesgue measure 0. To point out the difference between porous and nowhere dense sets note that if E c Y is nowhere dense y e Y and r 0 then there are a point z e Y and a number s 0 such that B z s c B y r E. If however E is also porous then for small enough r we can

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.