MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS RAVI

MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS RAVI P. AGARWAL, KANISHKA PERERA, AND DONAL O’REGAN Received 31 March 2005 We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods. 1. Introduction We consider the boundary value problem −∆ ϕ p ∆u(k − 1) = f k,u(k) , k ∈ [1,n], () u(k) 0, k ∈ [1,n], u(0) = 0 = u(n + 1), where n is an integer greater than or equal to 1, [1,n] is the discrete interval {1,.,n}, ∆u(k) = u(k + 1) − u(k) is the forward difference operator, ϕ p (s) = |s| p−2 s,. | MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS RAVI P AGARWAL KANISHKA PERERA AND DONAL O REGAN Received 31 March 2005 We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods. 1. Introduction We consider the boundary value problem -A ỹp Au k - 1 f k u k k e 1 n u k 0 k e 1 n u 0 0 u n 1 where n is an integer greater than or equal to 1 1 n is the discrete interval 1 . n Au k u k 1 - u k is the forward difference operator Ọp s s p-2s 1 p TO and we only assume that f e C 1 n X 0 to satisfies a0 k f k t a1 k t-Y k t e 1 n X 0 íq for some nontrivial functions a0 a1 0 and Y t0 0 so that it may be singular at t 0 and may change sign. Let A1 Ọ1 0 be the first eigenvalue and eigenfunction of -Aọp Au k - 1 Ảtyp u k k e 1 n u 0 0 u n 1 . Theorem . If holdsand f k t limsup7 p 1 Ả1 k e 1 n t TO tr then has a solution. Copyright 2005 Hindawi Publishing Corporation Advances in Difference Equations 2005 2 2005 93-99 DOI 94 Discrete p-Laplacian problems Theorem . If holdsand f k t1 0 k e 1 n for some t1 t0 then has a solution u1 t1. If in addition liminff _ A1 k e 1 n t M tp 1 then there is a second solution u2 u1. Example . Problem with f k t t-Y Atf has a solution for all Y 0 and A resp. A A1 A 0 if ỊỈ p - 1 resp. f p - 1 ỊỈ p - 1 by Theorem . Example . Problem with f k t t-Y et - A has two solutions for all Y 0 and sufficiently large A 0 by Theorem . Our results seem new even for p 2. Other results on discrete p-Laplacian problems can be found in 1 2 in the nonsingular case and in 3 4 5 6 in the singular case. 2. Preliminaries First we recall the weak comparison principle see . Jiang et al. 2 . Lemma . If -A Pp Au k - 1 -A Pp Av k - 1 k e 1 n u 0 v 0 u n 1 v n 1 then u v. Next we prove a local comparison result. Lemma . If -A Pp Au k - 1 -A Pp Av k - 1 u k v k u k 1 v k 1 then u k 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.