Báo cáo hóa học: " Towards Low-Power on-Chip Auditory Processing Sourabh Ravindran"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Towards Low-Power on-Chip Auditory Processing Sourabh Ravindran | EURASIP Journal on Applied Signal Processing 2005 7 1082-1092 2005 Hindawi Publishing Corporation Towards Low-Power on-Chip Auditory Processing Sourabh Ravindran Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email stg@ Paul Smith Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email pds@ David Graham Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email dgraham@ Varinthira Duangudom Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email vduangu@ David V. Anderson Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email dva@ Paul Hasler Department of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332-0250 USA Email phasler@ Received 18 September 2003 Revised 16 August 2004 Machine perception is a difficult problem both from a practical or implementation point of view as well as from a theoretical or algorithmic point of view. Machine perception systems based on biological perception systems show great promise in many areas but they often have processing requirements and or data flow requirements that are difficult to implement especially in small or low-power systems. We propose a system design approach that makes it possible to implement complex functionality using cooperative analog-digital signal processing to lower power requirements dramatically over digital-only systems as well as provide an architecture facilitating the development of biologically motivated perception systems. We show the architecture and application development approach. We also present several reference systems for speech recognition noise suppression and audio classification. Keywords

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.