Báo cáo hóa học: " Clustering of Dependent Components: A New Paradigm for fMRI Signal Detection"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Clustering of Dependent Components: A New Paradigm for fMRI Signal Detection | EURASIP Journal on Applied Signal Processing 2005 19 3089-3102 2005 Hindawi Publishing Corporation Clustering of Dependent Components A New Paradigm for fMRI Signal Detection Anke Meyer-Base Department of Electrical and Computer Engineering Florida State University Tallahassee FL 32310-6046 USA Email amb@ Monica K. Hurdal Department of Mathematics Florida State University Tallahassee FL 32306-4510 USA Email mhurdal@ Oliver Lange Department of Electrical and Computer Engineering Florida State University Tallahassee FL 32310-6046 USA Email oliver@ Helge Ritter Neuroinformatics Group Faculty of Technology University of Bielefeld 33501 Bielefeld Germany Email helge@ Received 1 February 2004 Exploratory data-driven methods such as unsupervised clustering and independent component analysis ICA are considered to be hypothesis-generating procedures and are complementary to the hypothesis-led statistical inferential methods in functional magnetic resonance imaging fMRI . Recently a new paradigm in ICA emerged that of finding clusters of dependent components. This intriguing idea found its implementation into two new ICA algorithms tree-dependent and topographic ICA. For fMRI this represents the unifying paradigm of combining two powerful exploratory data analysis methods ICA and unsupervised clustering techniques. For the fMRI data a comparative quantitative evaluation between the two methods tree-dependent and topographic ICA was performed. The comparative results were evaluated by 1 task-related activation maps 2 associated time courses and 3 ROC study. The most important findings in this paper are that 1 both tree-dependent and topographic ICA are able to identity signal components with high correlation to the fMRI stimulus and that 2 topographic ICA outperforms all other ICA methods including tree-dependent ICA for 8 and 9 ICs. However for 16 ICs topographic ICA is outperformed by treedependent ICA KGV using as an

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.