Advances in nanotechnology over the past decade have made scanning electron microscopy (SEM) an indispensable and powerful tool for analyzing and constructing new nanomaterials. Development of nanomaterials requires advanced techniques and skills to attain higher quality images, understand nanostructures, and improve synthesis strategies. A number of advancements in SEM such as field emission guns, electron back scatter detection (EBSD), and X-ray element mapping have improved nanomaterials analysis. In addition to materials characterization, SEM can be integrated with the latest technology to perform in-situ nanomaterial engineering and fabrication. Some examples of this integrated technology include nanomanipulation, electron beam nanolithography, and focused ion beam (FIB) techniques. Although these techniques are still being developed,.