Đề tài : Hiệu ứng bề mặt ở cấu trúc na nô

Do đóng góp của hiệu ứng bề mặt: các số nguyên tử nằm trên bề mặt sẽ chiếm tỉ lệ đáng kể so với tổng số nguyên tử Tỉ phần bề mặt/thể tích: S/V ~ 1/r lớn Năng lượng bề mặt chiếm ưu thế do liên kết bên trong lõi nhỏ VD: 1g CNT có tổng diện tích bề mặt m2 1 g TiO2 có các lỗ nanô tổng diện tích bề mặt 200-500 m2 (sân tennis) | CÔNG NGHỆ NANO HIỆU ỨNG BỀ MẶT Ở CẤU TRÚC NA NÔ NHÓM 2: Chủ đề Với các thành viên : Phạm Văn Thanh Phạm văn Cường Nguyễn văn Cường Nguyễn xuân Thái Nguyễn văn Thực Nguyễn hữu Kiên Lương đình Bang Bùi văn Phong Trương văn Dũng Hoàng hoa Thám Hiệu ứng bề mặt ở cấu trúc nano Bám dính(con thạch thùng) Không dính ướt (hiệu ứng lá sen) Dính ướt (hiệu ứng lá hoa hồng) Hiệu ứng bề mặt ở cấu trúc nano Do đóng góp của hiệu ứng bề mặt: các số nguyên tử nằm trên bề mặt sẽ chiếm tỉ lệ đáng kể so với tổng số nguyên tử Tỉ phần bề mặt/thể tích: S/V ~ 1/r lớn Năng lượng bề mặt chiếm ưu thế do liên kết bên trong lõi nhỏ VD: 1g CNT có tổng diện tích bề mặt m2 1 g TiO2 có các lỗ nanô tổng diện tích bề mặt 200-500 m2 (sân tennis) Bám dính Tại sao thạch thùng lại làm được như thế ??? Lật bàn chân của con thằn lằn ta thấy những lá mỏng vắt ngang (Hình 1B). Dưới kính hiển vi điện tử, khi phóng đại vài trăm nghìn lần, người ta không tìm thấy chất keo gì đặc biệt cả. Nhưng người ta thấy . | CÔNG NGHỆ NANO HIỆU ỨNG BỀ MẶT Ở CẤU TRÚC NA NÔ NHÓM 2: Chủ đề Với các thành viên : Phạm Văn Thanh Phạm văn Cường Nguyễn văn Cường Nguyễn xuân Thái Nguyễn văn Thực Nguyễn hữu Kiên Lương đình Bang Bùi văn Phong Trương văn Dũng Hoàng hoa Thám Hiệu ứng bề mặt ở cấu trúc nano Bám dính(con thạch thùng) Không dính ướt (hiệu ứng lá sen) Dính ướt (hiệu ứng lá hoa hồng) Hiệu ứng bề mặt ở cấu trúc nano Do đóng góp của hiệu ứng bề mặt: các số nguyên tử nằm trên bề mặt sẽ chiếm tỉ lệ đáng kể so với tổng số nguyên tử Tỉ phần bề mặt/thể tích: S/V ~ 1/r lớn Năng lượng bề mặt chiếm ưu thế do liên kết bên trong lõi nhỏ VD: 1g CNT có tổng diện tích bề mặt m2 1 g TiO2 có các lỗ nanô tổng diện tích bề mặt 200-500 m2 (sân tennis) Bám dính Tại sao thạch thùng lại làm được như thế ??? Lật bàn chân của con thằn lằn ta thấy những lá mỏng vắt ngang (Hình 1B). Dưới kính hiển vi điện tử, khi phóng đại vài trăm nghìn lần, người ta không tìm thấy chất keo gì đặc biệt cả. Nhưng người ta thấy những lá mỏng của bàn chân thạch thùng có một cấu trúc rất đặc biệt giống như bàn chải đánh răng với những cụm lông được sắp xếp với một thứ tự ngang dọc rất chính xác. Ở một độ phóng đại to hơn, người ta thấy ở đầu mỗi sợi lông tua ra những sợi lông con có hình dạng như cây chổi quét nhà (Hình 1D). Bốn bàn chân có tất cả 6,5 triệu lông con. Chiều dài của sợi lông con này là 200 nm và đường kính là 10 - 15 nm (nhỏ hơn sợi tóc 7000 lần). Đây là một cấu trúc nano thật hoàn hảo của thiên nhiên được tạo thành từ một loại protein gọi là keratin. Keratin cũng là thành phần chính trong vảy rắn, mu rùa, mỏ chim. Hình 1: (A) Con thạch thùng Tokay; (B) những lá mỏng vắt ngang bàn chân nhìn từ dưới lên; (C) lá mỏng là những cụm lông có thứ tự hình bàn chải đánh răng; (D) sợi lông chính tua ra những sợi lông con có hình dạng như cây chổi quét nhà; (E) những sợi lông con và (F) cấu trúc sợi nano nhân tạo [1]. Mặc dù cấu tạo bàn chân của các loại thạch thùng được biết rất rõ trong sinh học và động .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.