It is more than a century since Karl Pearson invented the concept of Principal Component Analysis (PCA). Nowadays, it is a very useful tool in data analysis in many fields. PCA is the technique of dimensionality reduction, which transforms data in the high-dimensional space to space of lower dimensions. The advantages of this subspace are numerous. First of all, the reduced dimension has the effect of retaining the most of the useful information while reducing noise and other undesirable artifacts. Secondly, the time and memory that used in data processing are smaller. Thirdly, it provides a way to understand and visualize the structure of complex data sets. Furthermore,.