hai hình bình hành ABCD và ABEF. Dựng các vectơ EH và FG bằng AD . Chứng minh rằng CDGH là hình bình hành tam giác ABC nội tiếp trong đường tròn (O), H là trực tâm của tam giác a)Gọi D là điểm đối xứng của A qua tâm O. Chứng minh rằng BD = HC b)Gọi K là trung điểm của AH và I là trung điểm của BC,chứng minh OK = IH hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của hai cạnh AB và CD. Đường chéo BD lần lượt cắt AF và CE tại.