This paper is the first in a series where we describe the space of all embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed Riemannian 3-manifold. The key for understanding such surfaces is to understand the local structure in a ball and in particular the structure of an embedded minimal disk in a ball in R3 (with the flat metric). This study is undertaken here and completed in [CM6]. These local results are then applied in [CM7] where we describe the general structure of fixed genus surfaces in 3-manifolds. There are two local models for.