Fox et al. (1998) carried out a logistic regression analysis with discrete covariates in which one of the covariates was missing for a substantial percentage of respondents. The missing data problem was addressed using the “approximate Bayesian bootstrap.” We return to this missing data problem to provide a form of case study. Using the Fox et al. (1998) data for expository purposes we carry out a comparative analysis of eight of the most commonly used techniques for dealing with missing data. We then report on two sets of simulations based on the original data