Cho trước độ dài |AC|, hãy dựng tam giác ABC với góc ·ABC = 90 độ, và trung tuyến BM thỏa mãn BM 2 = . Cho điểm M tuỳ ý trong đoạn thẳng AB. Dựng các hình vuông AMCD và MBEF nằm cùng phía đối với đường thẳng AB. Gọi P, Q lần lượt là tâm các đường tròn ngoại tiếp các hình vuông AMCD và MBEF. Các đường tròn này giao nhau tại M và N. (a) Chứng minh rằng AF và BC cắt nhau tại N. (b) Chứng minh rằng MN đi qua một điểm cố định S (không phụ thuộc vào M). (c).