Đề tài " Topological equivalence of linear representations for cyclic groups: I "

In the two parts of this paper we prove that the Reidemeister torsion invariants determine topological equivalence of G-representations, for G a finite cyclic group. 1. Introduction Let G be a finite group and V , V finite dimensional real orthogonal representations of G. Then V is said to be topologically equivalent to V (denoted V ∼t V ) if there exists a homeomorphism h : V → V which is G-equivariant. If V , V are topologically equivalent, but not linearly isomorphic, then such a homeomorphism is called a nonlinear similarity. .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG