A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1 [p] ∼ X2 [p]; however, conversely X1 [p] ∼ X2 [p] does = = in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels which ensures this converse? Here are two known examples of such a condition: consider the case that X is ordinary, or the case that X.