Đề tài "Higher symmetries of the Laplacian "

We identify the symmetry algebra of the Laplacian on Euclidean space as an explicit quotient of the universal enveloping algebra of the Lie algebra of conformal motions. We construct analogues of these symmetries on a general conformal manifold. 1. Introduction The space of smooth first order linear differential operators on Rn that preserve harmonic functions is closed under Lie bracket. For n ≥ 3, it is finitedimensional (of dimension (n2 + 3n + 4)/2). Its commutator subalgebra is isomorphic to so(n + 1, 1), the Lie algebra of conformal motions of Rn . Second order symmetries of the Laplacian.

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG