# Đề tài " A geometric LittlewoodRichardson rule "

## We describe a geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties into the union of Schubert varieties. There are no restrictions on the base ﬁeld, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of explicit homotopies. It has straightforward bijections to other Littlewood-Richardson rules, such as tableaux, and Knutson and Tao’s puzzles. This gives the ﬁrst geometric proof and interpretation of the Littlewood-Richardson rule. Geometric consequences are described here and in [V2], [KV1], [KV2],.

TÀI LIỆU LIÊN QUAN
53    18    0
TÀI LIỆU XEM NHIỀU
13    18550    648
25    11766    2562
20    10892    1104
3    10762    94
37    10138    2581
14    9390    1927
8    8198    1670
23    7315    269
2    7178    136
17    7072    181
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
226    16    1    05-08-2021
20    3    2    05-08-2021
14    6    1    05-08-2021
125    10    1    05-08-2021
3    8    2    05-08-2021
34    12    1    05-08-2021
19    2    1    05-08-2021
104    7    1    05-08-2021
9    13    1    05-08-2021
2    15    2    05-08-2021
18    18    6    05-08-2021
97    10    1    05-08-2021
14    4    2    05-08-2021
121    5    1    05-08-2021
60    20    2    05-08-2021
134    10    2    05-08-2021
14    10    1    05-08-2021
8    10    1    05-08-2021
72    15    1    05-08-2021
98    9    3    05-08-2021
TÀI LIỆU HOT
3    10762    94
13    18550    648
3    878    71
580    2906    282
584    1435    57
62    3189    1
171    2830    507
2    1210    64
51    1519    92
53    2064    87