Given a holomorphic vector bundle E over a compact K¨hler manifold X, a one defines twisted Gromov-Witten invariants of X to be intersection numbers in moduli spaces of stable maps f : Σ → X with the cap product of the virtual fundamental class and a chosen multiplicative invertible characteristic class of the virtual vector bundle H 0 (Σ, f ∗ E) H 1 (Σ, f ∗ E). Using the formalism of quantized quadratic Hamiltonians [25], we express the descendant potential for the twisted theory in terms of that for X. .