Đề tài " Invertibility of random matrices: norm of the inverse "

Let A be an n × n matrix, whose entries are independent copies of a centered random variable satisfying the subgaussian tail estimate. We prove that the operator norm of A−1 does not exceed Cn3/2 with probability close to 1. 1. Introduction Let A be an n × n matrix, whose entries are independent, identically distributed random variables. The spectral properties of such matrices, in particular invertibility, have been extensively studied (see, . [M] and the survey [DS]). While A is almost surely invertible whenever its entries are absolutely continuous, the case of discrete entries is highly nontrivial. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.