Định lí: Nếu là hàm liên tục trên đoạn , có đạo hàm trên khoảng và thì tồn tại sao cho . Chứng minh: Vì liên tục trên [a; b] nên theo định lí Weierstrass nhận giá trị lớn nhất M và giá trị nhỏ nhất m trên [a; b]. - Khi M = m ta có là hàm hằng trên [a; b], do đó với mọi luôn có . - Khi M m, vì nên tồn tại sao cho hoặc , theo bổ đề Fermat suy ra .