Lectures On Sheaf Theory By C.h. Dowker

1950-51 Expose 14. In the definition of a sheaf, X is not assumed to satisfy any separation axioms. S is called the sheaf space, π the projection map, and X the base space. The open sets of S which project homeomorphically onto open sets of X form a base for the open sets of S . Proof. If p is in an open set H, there exists an open G, p ∈ G such that π|G maps G homeomorphically onto an open set π(G). Then H ∩ G is open, p ∈ H ∩ G ⊂ H, and η|H ∩.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
81    92    1    15-05-2024
24    70    2    15-05-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.