Trong đại số trừu tượng, đại số Boole là một cấu trúc đại số có các tính chất cơ bản của cả các phép toán trên tập hợp và các phép toán logic. Cụ thể, các phép toán trên tập hợp được quan tâm là phép giao, phép hợp, phép bù; và các phép toán logic là Và, Hoặc, Không. | ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH ĐẠI HỌC CÔNG NGHỆ THÔNG TIN Nội dung 1. Giới thiệu 2. Đại số Boole 3. Biểu diễn các hàm logic dưới dạng chính quy 4. Tối thiểu hóa các hàm logic 5. Các phần tử logic cơ bản 6. Bài tập Đại số bool GIỚI THIỆU Trong đại số trừu tượng, đại số Boole là một cấu trúc đại số có các tính chất cơ bản của cả các phép toán trên tập hợp và các phép toán logic. Cụ thể, các phép toán trên tập hợp được quan tâm là phép giao, phép hợp, phép bù; và các phép toán logic là Và, Hoặc, Không. George Boole Full name George Boole Born 2 November 1815 Lincoln, Lincolnshire, England Died 8 December 1864 (aged 49) Ballintemple, County Cork, Ireland Era 19th-century philosophy Region Western Philosophy School Mathematical foundations ofcomputer science Main interests Mathematics, Logic, Philosophy of mathematics Notable ideas Boolean algebra Nội dung 1. Giới thiệu 2. Đại số Boole 3. Biểu diễn các hàm logic dưới dạng chính quy 4. Tối thiểu hóa các hàm logic . | ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH ĐẠI HỌC CÔNG NGHỆ THÔNG TIN Nội dung 1. Giới thiệu 2. Đại số Boole 3. Biểu diễn các hàm logic dưới dạng chính quy 4. Tối thiểu hóa các hàm logic 5. Các phần tử logic cơ bản 6. Bài tập Đại số bool GIỚI THIỆU Trong đại số trừu tượng, đại số Boole là một cấu trúc đại số có các tính chất cơ bản của cả các phép toán trên tập hợp và các phép toán logic. Cụ thể, các phép toán trên tập hợp được quan tâm là phép giao, phép hợp, phép bù; và các phép toán logic là Và, Hoặc, Không. George Boole Full name George Boole Born 2 November 1815 Lincoln, Lincolnshire, England Died 8 December 1864 (aged 49) Ballintemple, County Cork, Ireland Era 19th-century philosophy Region Western Philosophy School Mathematical foundations ofcomputer science Main interests Mathematics, Logic, Philosophy of mathematics Notable ideas Boolean algebra Nội dung 1. Giới thiệu 2. Đại số Boole 3. Biểu diễn các hàm logic dưới dạng chính quy 4. Tối thiểu hóa các hàm logic 5. Các phần tử logic cơ bản 6. Bài tập Đại số bool 2. Đại số Boole Các định nghĩa Biến : đại lượng nào đó, lấy giá trị 0 hoặc 1 Hàm : nhóm các biến lôgic liên hệ với nhau qua các phép toán lôgic, lấy giá trị 0 hoặc 1 Phép toán lôgic cơ bản: VÀ (AND), HOẶC (OR), PHỦ ĐỊNH (NOT) Đại số bool 2. Đại số Boole Biểu đồ Ven: Đại số bool A hoặc B A và B Mỗi biến lôgic chia không gian thành 2 không gian con: -1 không gian con: biến lấy giá trị đúng (=1) Không gian con còn lại: biến lấy giá trị sai (=0) A B Biểu diễn biến và hàm lôgic 2. Đại số Boole Biểu diễn biến và hàm lôgic Bảng thật: Đại số bool Hàm n biến sẽ có: n+1 cột (n biến và giá trị hàm) 2n hàng: 2n tổ hợp biến Ví dụ Bảng thật hàm Hoặc 2 biến A B F(A,B) 0 0 0 0 1 1 1 0 1 1 1 1 2. Đại số Boole Biểu diễn biến và hàm lôgic Bìa Cac-nô: Đại số bool Số ô trên bìa Cac-nô bằng số dòng bảng thật Ví dụ Bìa Cac-nô hàm Hoặc 2 biến 0 1 1 1 A B 0 1 0 1 2. Đại số Boole Biểu diễn biến và hàm lôgic Biểu đồ thời gian: Đại số .