Mining Console Logs for Large-Scale System Problem Detection

Given the well-estimated usual event model and an un- seen test sequence, we first slice the test sequence into fixed length segments with overlapping. This is done by mov- ing a sliding window. The choice of the sliding window size corresponds to the minimum duration constraint in the HMM framework. Given the usual event model, the likeli- hood of each segment is then calculated. The segment with the lowest likelihood value is identified as an outlier (Figure 2, step 1). The outlier is expected to represent one specific unusual event and could be used to train an unusual event model. However, one single outlier is obviously insufficient to give a good.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.