Báo cáo khoa học: "Fully Unsupervised Core-Adjunct Argument Classification"

The core-adjunct argument distinction is a basic one in the theory of argument structure. The task of distinguishing between the two has strong relations to various basic NLP tasks such as syntactic parsing, semantic role labeling and subcategorization acquisition. This paper presents a novel unsupervised algorithm for the task that uses no supervised models, utilizing instead state-of-the-art syntactic induction algorithms. This is the first work to tackle this task in a fully unsupervised scenario. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
476    16    1    25-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.