Báo cáo khoa học: "Identifying Text Polarity Using Random Walks"

Automatically identifying the polarity of words is a very important task in Natural Language Processing. It has applications in text classification, text filtering, analysis of product review, analysis of responses to surveys, and mining online discussions. We propose a method for identifying the polarity of words. We apply a Markov random walk model to a large word relatedness graph, producing a polarity estimate for any given word. A key advantage of the model is its ability to accurately and quickly assign a polarity sign and magnitude to any word. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.