This paper establishes a connection between two apparently very different kinds of probabilistic models. Latent Dirichlet Allocation (LDA) models are used as “topic models” to produce a lowdimensional representation of documents, while Probabilistic Context-Free Grammars (PCFGs) define distributions over trees. The paper begins by showing that LDA topic models can be viewed as a special kind of PCFG, so Bayesian inference for PCFGs can be used to infer Topic Models as well. Adaptor Grammars (AGs) are a hierarchical, non-parameteric Bayesian extension of PCFGs. .