Báo cáo khoa học: "Domain Adaptation of Maximum Entropy Language Models"

We investigate a recently proposed Bayesian adaptation method for building style-adapted maximum entropy language models for speech recognition, given a large corpus of written language data and a small corpus of speech transcripts. Experiments show that the method consistently outperforms linear interpolation which is typically used in such cases.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.