We investigate hierarchical graphical models (HGMs) for automatically detecting decisions in multi-party discussions. Several types of dialogue act (DA) are distinguished on the basis of their roles in formulating decisions. HGMs enable us to model dependencies between observed features of discussions, decision DAs, and subdialogues that result in a decision. For the task of detecting decision regions, an HGM classifier was found to outperform non-hierarchical graphical models and support vector machines, raising the F1-score to from . .