Negation is present in all human languages and it is used to reverse the polarity of part of statements that are otherwise affirmative by default. A negated statement often carries positive implicit meaning, but to pinpoint the positive part from the negative part is rather difficult. This paper aims at thoroughly representing the semantics of negation by revealing implicit positive meaning. The proposed representation relies on focus of negation detection. For this, new annotation over PropBank and a learning algorithm are proposed. .