Báo cáo khoa học: "Better Hypothesis Testing for Statistical Machine Translation: Controlling for Optimizer Instability"

In statistical machine translation, a researcher seeks to determine whether some innovation (., a new feature, model, or inference algorithm) improves translation quality in comparison to a baseline system. To answer this question, he runs an experiment to evaluate the behavior of the two systems on held-out data. In this paper, we consider how to make such experiments more statistically reliable. We provide a systematic analysis of the effects of optimizer instability—an extraneous variable that is seldom controlled for—on experimental outcomes, and make recommendations for reporting results more accurately. .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.