Báo cáo khoa học: "Joint Training of Dependency Parsing Filters through Latent Support Vector Machines"

Graph-based dependency parsing can be sped up significantly if implausible arcs are eliminated from the search-space before parsing begins. State-of-the-art methods for arc filtering use separate classifiers to make pointwise decisions about the tree; they label tokens with roles such as root, leaf, or attaches-tothe-left, and then filter arcs accordingly. Because these classifiers overlap substantially in their filtering consequences, we propose to train them jointly, so that each classifier can focus on the gaps of the others. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
463    20    1    28-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.