Báo cáo khoa học: "Latent Variable Models of Concept-Attribute Attachment"

This paper presents a set of Bayesian methods for automatically extending the W ORD N ET ontology with new concepts and annotating existing concepts with generic property fields, or attributes. We base our approach on Latent Dirichlet Allocation and evaluate along two dimensions: (1) the precision of the ranked lists of attributes, and (2) the quality of the attribute assignments to W ORD N ET concepts. In all cases we find that the principled LDA-based approaches outperform previously proposed heuristic methods, greatly improving the specificity of attributes at each concept. .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.